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Background

Discrete-time Markov decision processes

Model g = {X, A, 7Tn('|hn)7 Q('|X7 3)7 C(X7 a)} .

state space: X

action space: A

admissible state-action pairs: K = {(x,a) : x € X,a € A(x)}
history: Ho := X, H, = (X X A)" x X (n>1)

strategy: 7n(:|hn) n > 0 stochastic kernels on A given H,
transition law: Q(:|x, a) stochastic kernel on X given K

cost function: ¢(x, a)
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Background

Discrete-time Markov decision processes

Model G := {X, A, ma(:|hn), Q(-|x, a), c(x,a)}.
o state space: X
@ action space: A
o admissible state-action pairs: K = {(x,a) : x € X,a € A(x)}
@ history: Ho:= X, Ho=(X xA)"x X (n>1)
strategy: 7n(:|hn) n > 0 stochastic kernels on A given H,

@ transition law: Q(‘|x, a) stochastic kernel on X given K

@ cost function: c(x, a)

mo(|x0)—Q(+|x0,20) % m1(-|x0,80,x1) = Q(+|x1,21)
1

Xp -+
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Strategy

o Randomized history-dependent strategy: m,(:|hn) n > 0 stochastic kernels on A given
H,.

o Markov strategy: for any n > 0, if there exists a stochastic kernel ¢, such that
Ta(:|hn) = @n(-|xn) for all h, € H,.

@ Stationary Markov strategy: if there exists a stochastic kernel ¢ such that
a(-|hn) = ¢(-|xn) for all h, € H, and n > 0.

o Deterministic stationary Markov strategy: if there exists a mapping  : X — A with
f(x) € A(x) for all x € X, such that 7,(-|hy) = d¢(x,)(-) for all h, € H, and n > 0.
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Optimality Criteria

Classical expected criteria:
o expected discounted payoff J(x, ) := ET [Y oo ac(xt, at)]
o expected finite horizon (for any fixed T) payoff
J(x,7) = EF [zj;ol c(xe, ac) + g(xT)]

o expected average payoff J(x, ) := limsup 2 ET 32775 c(x, a¢)]

n—oo
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Optimality Criteria

Classical expected criteria:
o expected discounted payoff J(x, ) := ET [Y oo ac(xt, at)]
o expected finite horizon (for any fixed T) payoff
J(x,7) = EF [zj;ol c(xe, ac) + g(xT)]

o expected average payoff J(x, ) := limsup 2 ET 32775 c(x, a¢)]
n— oo

Risk-sensitive criteria:
o risk-sensitive discounted payoff J(x,w) := ET [eA 2% atc(xf’af)]
o risk-sensitive finite horizon (for any fixed T) payoff
I, m) = EF [ O e satn)]

o risk-sensitive average payoff J(x, ) := limsup -5 In ET [e>‘2?§01 C(X“a‘)]
n—oo

A > 0, risk-averse

A : risk-sensitivity coefficient ) .
A < 0, risk-seeking
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Optimal strategy

Definition
A strategy ™ € I is said to be optimal for model G if
J(x,7%) < J(x,7)

for all x € X and w € I.
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Background

Literature

Classical expected criteria: Puterman (1994), Herndndez&Lasserre (1996, 1999), Bertsekas
(2005), Biuerle&Rieder (2011),...
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Background

Example

Example 1

The control model is given as follows: X = {0,1,2,...}, A= {0}, Q(1]|0,0) = p,

Q(0]0,0) =1—p, Q(i+1|i,0) =p, Q(i —1|i,0)=1—p forall i > 1, ¢(0,0) = w and
NN . 1 1

¢(i,0) =0 for all i > 1, where the constants p € (0, 3) and @ < In ek Take the

risk-sensitivity parameter A = 1.
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Background

Example

Example 2

The controlled linear Gaussian system is given by x¢11 = Ux: + Wa; + & for all t > 0,
where the state x; € R”, the action a; € R”, the matrices U € R"*", W € R"*" and
the Gaussian white noise &; is i.i.d. with & ~ N(0,X). We assume that the rank of
matrices U and ¥ equals n and v := || U||*> < 1. Let I(x) := @XTUTUX + 1 for all
x € X :=R" for some ¢ satisfying some condition.

E1) For each x € X, A(x) is compact and A is compact.

E2

(
(E2) I(:) — SUP,ea() Ac(+, a) is coercive.

(E3) For any compact set C C X, SUP,cC.ach c(x,a) < oo.
(E4)

E4) For each x € X, c(x, a) is lower semi-continuous in a € A(x).

T —— Ty



Countable spaces case

Model
o state space: X countable set/Borel space
@ action space: A Borel space
o admissible state-action pairs: K = {(x,a) : x € X,a € A(x)}
@ history: Hy:= X, Ho=(X x A)"x X (n>1)
o strategy: mn(:|hn) n > 0 stochastic kernels on A given H,.
o transition law: Q(:|x, a) stochastic kernel on X

cost function: ¢(x, a)
Model G := {X7 A: ﬂ—"('lh")v C(Xv 3)7 Q('|X7 a)} .

Risk-sensitive average payoff J(x, ) := limsup % In ET [e)‘zgol C(X"af)].
n—oo
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Multiplicative ergodic theory

Theorem (Balaji&Meyn 2000 SPA)

Suppose that {X,} is an irreducible and aperiodic Markov chain with countable state space X, and
that the sublevel set {x : F(x) < n} is finite for each n. Suppose that there exists V : X — [1, c0),
a finite set C and a constant b < oo, satisfying

D VP(xy) < e FOIV(x) + blc(x).
yeX

Then there exist a functionllj_ : X = R and a constant A > 0 such that
OA= lim % >oise F(Xe)
() A= lim LinE, [e o FXe ]
v n—1
(i) F(x) = lim Ex [lezo (F<Xr)—">]
. n—oo
iii) (F,\) solves the multiplicative Poisson equation
( ) ( ) 1% q

eFPF = MF.
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Countable spaces case

Assumptions

Assumption

(i) For any f € F, the Markov chain associated with the transition law Q(:|-, f(-)) is
aperiodic and irreducible.

(ii) For each i € X, the set A(i) is compact. Moreover, c(i,-) and Q(j|i,-) are lower
semi-continuous on A(i) for all i,j € X.

(iii) There exist a real-valued function w > 1 on X, a norm-like function | > 0 on X, a

constant d > 0 and a finite set C C X such that

> w(i)QUli,a) < e Dw(i) + dic(i)

jes

for all (i,a) € K. Moreover, I(-) — sup,ca(.) Ac(+, a) is norm-like.

T ——
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Countable spaces case

Auxiliary functions

Fix z€ C. Forany i € X, f € F, and p € R" := [0, 00), the risk-sensitive first passage
function is defined by

v(i,f,p) = Ef [eA ZZO_I(C(X““XT))*")] .
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Countable spaces case

Auxiliary functions

Fix z€ C. Forany i € X, f € F, and p € R" := [0, 00), the risk-sensitive first passage
function is defined by

T,—1
Vi, f,p) = Ef [ 57 (c(th(xt»fp)].

For each p € R* and i € X, set
vi(i, p) = inf v(i, £, p),

which is referred to as the risk-sensitive first passage optimal value function.
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Countable spaces case

Auxiliary functions

Fix z€ C. Forany i € X, f € F, and p € R" := [0, 00), the risk-sensitive first passage
function is defined by

v(i, £,p) 1= Ef [} 2050 (Corta=a],
For each p € R* and i € X, set
vi(i, p) = inf v(i, £, p),

which is referred to as the risk-sensitive first passage optimal value function. Moreover,
define

G = {p e R+ : V*(Z,p) S 1}, p* = mf(G
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Main Result

Main Theorem
Under the above Assumptions, the following statements are true.
(a) There exists a unique positive function u™ on X with u*(z) =1 such that
S = inf LM ol
()= inf. { > ()aulia)
JES
for all i € X. Moreover, we have u™(i) = v*(i,p") for all i € X.

(b) There exists f* € F with f*(i) € A(i) attaining the infimum in (1) and
p*=J(i,f") =infren J(i,7) for all i € X.

(c) A stationary policy f € F is optimal if and only if

1)

Ae(i,f(i))=p™) s i F()) = inf Ae(i,a)—p*) _— .
: 520 QU ) = ing {0 S0 )aul )|

Jjes JjE€Ss
forall i € X.
Risk-sensitive average MDP 15/31



Proposition

Forany f € F, (p",v(i,f,p")) solves the multiplicative Poisson equation

v(i, £, ") = TS £, o) QU ().

JjeX

For n > 2, define

ca(i,a) :==c(i,a) + % [/(i) - m;"a(x) Ac(i, a)] V0 for all (i,a) € K.
acA(l

e —— Ty



We need to introduce the new transition law as follows: for any n > 2 and i,j € X,
o
@ (li)
1

— Aen(iF () =Ph) (115 (i i oo
: V,,(i, f,pﬁ)e Q(J|’7 (’))V"(.h 7Pn)

Key Lemma

There exist a subsequence of {n} (denoted by the same sequence) and a constant R > 1
such that sup,>, E"[R™] < .

Risk-sensitive average MDP 17 /31



Multiplicative ergodic theory

Theorem (Balaji&Meyn 2000 SPA)

Suppose that {X,} is an irreducible and aperiodic Markov chain with countable state space X, and
that the sublevel set {x : F(x) < n} is finite for each n. Suppose that there exists V : X — [1, c0),
a finite set C and a constant b < oo, satisfying

D VP(xy) < e FOIV(x) + ble(x).
yeX

Then there exist a functionllj_ : X = R and a constant A > 0 such that
DA = lim L 2iso FXo)
() A= lim LinE, [e o r]
v n—1
(i) E(x) = lim Ex [lezo (F<Xr>—">]
. n—oo
(iii) (F, \) solves the multiplicative Poisson equation
eFPF = MF.

(iv) For any fixed z € X, A is the unique solution to

E. [eX0 RGCOR M =1
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and F(x) = Ex [ez - A)]
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Multiplicative ergodic theory

Theorem (Balaji&Meyn 2000 SPA)

Suppose that {X,} is an irreducible and aperiodic Markov chain with countable state space X, and
that the sublevel set {x : F(x) < n} is finite for each n. Suppose that there exists V : X — [1, c0),
a finite set C and a constant b < oo, satisfying

D VP(xy) < e FOIV(x) + ble(x).
yeX

Then there exist a functionll:' : X = R and a constant A > 0 such that
DA = lim L 2iso FXo)
() A= lim LinE, [e o r]
v n—1
(i) E(x) = lim Ex [lezo (F<Xr>—">]
. n—oo
(iii) (F, \) solves the multiplicative Poisson equation
eFPF = MF.

(iv) For any fixed z € X, A is the unique solution to

E. [eX0 RGCOR M =1

)

and ﬁ(x) = Ex |:e :é(;l(F(Xt)*A)] .

Kontoyiannis&Meyn 2003 AAP, 2005 EJP; Wu 2004 PTRF; Hennion 2007 PTRF
Risk-sensitive average MDP 18 /31



General spaces case

Let B be an abstract Banach space, £(B) is the Banach algebra of bounded operators on
B, and Q € L(B). We denote by r(Q) the spectral radius of Q, and by Q|¢ its restriction
to a Q-invariant subspace G.

Definition
(i) The essential spectral radius of Q@ € L(B), denoted by r.(Q), is the infimum of r(Q)
and of the real number p > 0 such that we have

B=F,®H,,

where F, and H, are Q-invariant subspaces such that H, is closed and r(Qu,) < p,
dimF, < oo and the eigenvalues of Qf, have a modulus > p.
(ii) When r.(Q) < r(Q), the operator Q is said to be quasi-compact.

Gelfand's formula

Let K(B) be the ideal of compact operators on B. For any Q € L(B), we have

r(Q) = lim (inf{||Q" ~ V|| : V € K(B)})!/".

T —— oY



General spaces case

Let Q be a bounded positive kernel on (X, X’). For any positive measurable g and x € X,
define Qg(x) := [, &(y)Q(x,dy). Then the kernel Q defines a positive bounded operator
on the Banach space of bounded measurable complex valued functions on (X, X) equipped
with the supremum norm.

Theorem (Hennion 2007 PTRF)

Assume that there exist a probability measure v and a positive measurable function o on
(X x X, X ® X), such that the functions a(x,-), x € X, are uniformly v-integrable.
Define the bounded positive kernel T, o as

Toa(x,A) = /Aoz(x,y)l/(dy), (x,A) € X x X.

IfS=Q— T,a >0 and r(S) < r(Q), then the operator Q is quasi-compact.

T —— SV



General spaces case

Assumption

(i) For any f € F, the Markov chain associated with the transition law Q(-|-, f(-)) is
aperiodic and irreducible.

(ii) For each x € X, A(x) is compact, c(x, a) is lower semi-continuous in a € A(x) and
Jx u(y)Q(dylx, a) is continuous in a € A(x) for all u € Bp(X).

(iii) There exist a real-valued measurable function w > 1 on X, a norm-like function | > 0
on X, a constant d > 0 and a set C C X such that

/ w(y)Q(dyl|x,a) < e '@ w(x) + dic(x) for all (x,a) € K.
X

Moreover, I(-) — sup,ca.) Ac(:, a) is coercive.

T — YT



General spaces case

Assumption

(iv) There exist a probability measure v1 on B(X) and a nonnegative real-valued
measurable function g on K x X such that Q(dy|x, a) = q(x, a, y)vi(dy) for all
(x,a) € K. Foreach f € F, {q(x,f(x),-),x € C} is uniformly integrable with respect
to the measure v;.

(v) There exist a probability measure v, on B(X), a positive integer ny and a constant
B € (0,1) such that Q™(-|x, f) > Blc(x)va(-) for all x € X and f € F.

T —— )5



Main Result

Main Theorem
Under the above Assumptions, the following statements are true.
(a) There exist a constant n* > 1, a positive measurable function

u* € By(X) = {u:sup,cx I 50} and £* € F such that for all x € X,

w(x)

e (x) = inf){e”(x"’)/ U*(Y)Q(d}’|x73)} ZeM(X’f*)/ u* () Q(dylx, ).
X X

acA(x

(b) The policy f* € F in part (a) is optimal and $ Inn* = J(x, f*) = infren J(x, ) for
all x € X.

T —— )5



General spaces case

Define 8(x) := 5o —, Q¥ (x, dy) := e w(y)Q(dylx, f)

2supyec w(x)' w(x)
Qrlaylx) = Q" (dybx) — S(x)waldy) and wi(x) = wi(x) gy Q5[] for any
x € X. Denote by n’ the spectral radius of Qf .

Proposition

For any f € F, (", v¢(x)) solves the multiplicative Poisson equation

n've(x) = e*ef ) / ve(y) Q(dylx, f).
xeX

T —— 251



General spaces case

Define 5(x) := LX) Q¥ (x, dy) = % e Dw(y)Q(dylx, f),

2sup,cc w(x)’ w(x

Qr(dylx) == @} ey ) = SCua(dy) and vi(x) = wlx) 2 oy “TU™ QFS(x) for any
x € X. Denote by n' the spectral radius of Qf .

Proposition

For any f € F, (n", v¢(x)) solves the multiplicative Poisson equation

0 ve(x) = X0 / ve(y)Qdyx, ).
xeX

Main idea:
Prove that éfw is quasi-compact on the Banach space of all bounded measurable functions
on (X, X).

T — SV



General spaces case

Example

Example 1

The control model is given as follows: X = {0,1,2,...}, A= {0}, Q(1]0,0) = p,
Q(0]0,0) =1—p, Q(i +1|i,0) =p, Q(i —1|i,0) =1—pforall i > 1, ¢(0,0) = w and
c(i,0) = 0 for all i > 1, where the constants p € (0, 3) and @ < In % Take the

vV p(1—p)

risk-sensitivity parameter A = 1.

This example is given to illustrate the facts:

(1) the key assumption in Jaskiewicz (2007 AAP) fails to hold;

(2) the near-monotone condition in Herndndez-Herndndez&Marcus (1999 AMO) fails to
hold;

(3) the set of states in which the limit point of the discount relative function is finite in
Cavazos-Cadena&Salem-Silva (2010 AMO) is empty.

T — ST



General spaces case

Example

Example 2

The controlled linear Gaussian system is given by x¢11 = Ux: + Wa; + & for all t > 0,
where the state x; € R”, the action a; € R”, the matrices U € R"*", W € R"*" and
the Gaussian white noise &; is i.i.d. with & ~ N(0,X). We assume that the rank of
matrices U and ¥ equals n and v := || U||*> < 1. Let I(x) := @XTUTUX + 1 for all
x € X :=R" for some ¢ satisfying some condition.

E1) For each x € X, A(x) is compact and A is compact.

E2

(
(E2) I(:) — SUP,ea() Ac(+, a) is coercive.

(E3) For any compact set C C X, SUP,cC.ach c(x,a) < oo.
(E4)

E4) For each x € X, c(x, a) is lower semi-continuous in a € A(x).

T —— SV



Policy lteration Algorithm

1. (Initialization) Set k = 0 and select any stationary policy f € F.
2. (Policy evaluation) For the policy fi, the function vk on X and the constant e*** are
the unique solution to the multiplicative Poisson equation satisfying

vi(z) =1 and kv, (i) = Z vie ()UK D Q(jli, £ (i) for all i € X.
JjeX

3. (Policy improvement) Choose fi41 to satisfy

fia(i) € argmin,c 4 4 €)D" vi(j)Q(jli, a) p for all i € X,

JjeX

setting fx+1 = fi if possible.
4. If fiy1 = £y, stop and set f* = f,. Otherwise, let k + k + 1 and return to step 2.

T — SV



Policy lteration Algorithm

1. (Initialization) Set k = 0 and select any stationary policy f € F.
2. (Policy evaluation) For the policy fi, the function vk on X and the constant e*** are
the unique solution to the multiplicative Poisson equation satisfying

vi(z) =1 and kv, (i) = Z vie ()UK D Q(jli, £ (i) for all i € X.
JjeX

3. (Policy improvement) Choose fi41 to satisfy

fia(i) € argmin,c 4 4 €)D" vi(j)Q(jli, a) p for all i € X,

JjeX

setting fx+1 = fi if possible.
4. If fiy1 = £y, stop and set f* = f,. Otherwise, let k + k + 1 and return to step 2.

Theorem
limg—oo pk = p* and lime_oo vik(i) = v* (i, p*) for all i € X. J
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Algorithm

For any i,j € X and k > 0, define

eNe@AM=r) Q(jli, Fi(1))vie()
Vk(i) Vk(,‘)~

Denote by ﬁ,—k the probability measure associated with the transition law p.,.(f) for any
initial state i € X.

pij(fi) = and pi(fi) ==

Key Lemma
There exist constants « € (0,1) and L* > 0 such that
> jes Hilfi) Pt (ir = j) — z/k(j)’ < L*ofui(fc) foralli€ X, k>1andt>1.

T —— SV



Algorithm

Remark

(a) We obtain optimality equation without compact support condition on the cost and
simultaneous Doeblin condition in Cavazos-Cadena (2018 MOR), without the
boundedness condition on the cost in Masi&Stettner (1999, 2007 SICON; 2000 SCL)
and Jaskiewicz (2007 SCL) and without the requirement that there exists a state
i’ € X such that Q(j|i’,a) > 0 for all j € X \ {i’} and a € A(i’) in Biswas&Pradhan
(2022 ESAIM).

(b) Our approach is different from the technique of using the nonlinear version of
Krein-Rutman theorem in Biswas&Pradhan (2022 ESAIM).

(c) We prove the convergence of policy iteration algorithm under conditions different
from Biswas&Pradhan (2022 ESAIM) and Borkar&Meyn (2002 MOR).
(c1) We do not require the following conditions in Biswas&Pradhan (2022 ESAIM):
(1) there exists a state i’ € X such that Q(j|i’,a) > 0 for all j € X \ {i’} and
a € A(i"); (2) there exists a constant ¢ € (0,1) such that max;ea() c(i,a) < ¢/(i) for
all i € X; (3) there exists a state j' € X such that inf,ca;)@(’|i,a) > 0 for all i € X.
(c2) We do not require the norm-like condition on the cost and some less easily
verifiable conditions in Borkar&Meyn (2002 MOR).
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